EXCRETORY PRODUCTS & ELIMINATION

EXCRETION

Elimination of nitrogenous waste (Ammonia/Urea/Uric acid)

OSMOREGULATION

Process to regulate the osmotic pressure of body fluids and electrolytic balance in organisms.

Ammonotelic

- Organisms which release ammonia as excretory products.
- Ammonia is the most toxic & requires large amount of water for excretion.
- Can be removed by diffusion (via skin/gills).
- Eg., Bony fishes, aquatic amphibians & aquatic insects.

Ureotelic

- Organisms that release urea as excretory products.
- Less toxic, water is conserved.
- Some amount of urea may be retained in kidneys (osmoregulation).
- Eg., Mammals, amphibians, marine fishes.

Uricotelic

- Organisms that release uric acid as excretory product
- In form of pallet/paste (min. loss of water)

Eg; Reptiles, Snails, Birds, insects.

55

Note - In Ornithine cycle CO ₂ + NH ₃ are removed as waste				
Excretory Organs		Organisms		
Protonephridia / Flame cells		Platyhelminthes, rotifers, some annelids (eg - <i>Planaria</i>)		
Nephridia		Annelids (eg - Earthworm)		
Malphigian Tubules		Insects, cockroaches		
Antennal glands/ Green glands		Crustaceans (prawns)		
Human Excretory System				
Kidneys	(Pair) Ureters (Pair)	Urinary Bladder	Urethra	
Note - Kidneys filter 1100-1200 mL blood per min (1/5th of what is pumped by ventricles). Inferior vena cava Descending vena cava Output Descending vena cava Descending vena cava				
Right kidney Renal column Renal pelvis Medullary pyramid Cortex Ureter Common iliac artery				
Common iliac vein				
Kidneys	Reddish brown, bean shaped.			
Size	10 - 12 cm (length) ,5 - 7 cm (width), 2 - 3 cm (thick)			
Weigth	120 - 170 gm			
Location	Level of last thoracic & 3rd lumbar vertebra; close to dorsal inner wall (abdomen).			

Structure

- Hilum Notch at concave side of kidney (Ureter, blood vessels enter)
- Calyces projections in funnel shaped space(renal pelvis)
- Capsule outer layer (tough)
- There are two zones in Kidney- Cortex and Medulla.
- Medulla is divided in medullary pyramids, projecting in calyces
- Column of Bertini cortex extending b/w medullary pyramids

- Peritubular capillaries- Network of capillary made by efferent arteriole around renal tubule.
- Vasa recta-Vessel network running parallel to Henle's Loop

Urine Formation

Glomerular Filtration

Reabsorption

Secretion

(1) GLOMERULAR FILTRATION (or ULTRAFILTRATION)

- Blood pressure in glomerular capillary causes filtration.
- · Filtration occurs by via 3 Layers
 - -Endothelium (blood vessel)
 - -Bowman's capsule (epithelium)
 - -Basement membrane
- Glomerular/Nephric filtrate = Blood-(Blood cells + Plasma protein)
- Glomerular filtration rate (GFR)- Amount of filtrate formed by kidneys per min. ≈125mL/min or 180 L/day.

Note- In Bowman's capsule, podocytes arrangment forms slit pores.

Juxta Glomerular Apparatus (JGA)

- Cellular modification of DCT and afferent arteriole.
- Fall in GFR, activates JG cells (brings GFR back to normal)
 (2) REABSOPRTION
- Substances filtered (Na, K, glucose, AA, bicarbonate, 75% water) are reabsorbed by renal tubules (PCT) actively.
- Some nitrogenous waste and water also reabsorbed passive.

(3) SECRETION

- Secretion of H⁺, K⁺ & ammonia into filtrate by tubular cells.
- Important for urine formation, maintaining acid-base idnic balance by fluids.

FUNCTIONS OF TUBULES

PCT Henle's Loop DCT **Collecting Duct**

Proximal convoluted tubule (PCT)

- Lined by brush border cuboidal epithelium (High surface area
- 70-80% reabsorption of H₂O & electrolytes
- Maintain pH, Ionic balance
- secretion of H⁺, K⁺ & NH⁺⁴ ions; absorption of HCO₃⁻ ions.

Henle's Loop				
Ascending limb	Descending Limb			
Reabsorption (v. Less)	Permeable to H₂O			
Maintains osmolarity of medullary	Impermeable to			
interstitial fluid	electrolytes			
Impermeable to H ₂ O ,Permeable to	concentrates filtrate			
electrolytes Dilutes filtrate	concentrates filtrate.			

Distal convoluted tubule (DCT)

- Reabsorption of Na⁺, H₂O, HCO³
- Secretion of H⁺, K⁺, NH₃,
- maintains pH & Na⁺ K⁺ balance in blood

Collecting Duct

- extends from cortex to medulla
- forms concentrated urine (reabsorb H₂O)
- mainatain osmolarity, pH, Ionic balance
- selectively secretes H*,K* ions

Counter Current Mechanism

Flow of filtrate in two limbs of Henle's Loop and blood in both Limbs of vasa recta in opposite direction.

- Osmolarity increases from cortex to medulla (300 mOsmol/L to 1200 mOsmol/L)
- due to NaCl & urea.
- Helps urine to get concentrated (4 times).

Regulation of Kidney Functiom

Hormonal feedback mechanism - Hypothalamus, JGA, heart

Loss of stimulates Activate ADH Helps
fluids hypothalamus (Antidiuretic hormone) reabsorption
from blood or Vasopressin

*Feedback mechanism suppresses ADH receptors

increases body fluid volume

Renin - Angiotensin mechanism

(Falls in GFR) activates JG cells and Releases Renin

A check to the Renin-Angiotensin mechanism

High blood Atrail Natriuretic Factor (ANF) Vasodilation decreases

MICTURITION

- Process to release urine Micturition
- Signals from CNS are received, in response to stretch receptors of walls of the urinary bladder; contracts smooth muscles; urethral sphincter relaxes.
- Average 1-1.5 L/day urine.
- Acidic (pH-6) in nature, 25-30gm of urea per day

Presence of glucose in urine - Glycosuria diabetes

Presence of ketone bodies in urine - ketonuria mellitus

Other organs

- Lungs- Remove CO₂ (200mL/min) and water
- Liver- Secrete bilirubin, biliverdin, cholesterol, steroid hormones, vitamins (released as digestive waste)
- Sweat glands Sweat contains H₂O, NaCl, urea (small amount), lactic acid etc.
- Sebaceous glands eliminates small amount of nitrogenous waste, Steroids, hydrocarbons

DISORDERS

- <u>Uremia</u> Kidney malfunction due to urea accumulation.
- Renal calculi Stone/insoluble mass of crystallised salts (oxalates, etc) in kidney.
- Glomerulonephritis Inflammation of glomeruli of kidney.
- Renal failure/Kidney failure
- Urea can be removed by hemodialysis (use of artificial kidney for clearing blood)
- Artificial kidney contains a cellophane tube that helps passing nitrogenous waste to dialysing fluid (same composition as plasma).

 Heparin is used as anticoagulant.

