EXCRETORY PRODUCTS & ELIMINATION # **EXCRETION** Elimination of nitrogenous waste (Ammonia/Urea/Uric acid) ## **OSMOREGULATION** Process to regulate the osmotic pressure of body fluids and electrolytic balance in organisms. # **Ammonotelic** - Organisms which release ammonia as excretory products. - Ammonia is the most toxic & requires large amount of water for excretion. - Can be removed by diffusion (via skin/gills). - Eg., Bony fishes, aquatic amphibians & aquatic insects. # **Ureotelic** - Organisms that release urea as excretory products. - Less toxic, water is conserved. - Some amount of urea may be retained in kidneys (osmoregulation). - Eg., Mammals, amphibians, marine fishes. #### Uricotelic - Organisms that release uric acid as excretory product - In form of pallet/paste (min. loss of water) Eg; Reptiles, Snails, Birds, insects. 55 | Note - In Ornithine cycle CO ₂ + NH ₃ are removed as waste | | | | | |---|---|--|---------|--| | Excretory Organs | | Organisms | | | | Protonephridia / Flame cells | | Platyhelminthes, rotifers, some annelids (eg - <i>Planaria</i>) | | | | Nephridia | | Annelids (eg - Earthworm) | | | | Malphigian Tubules | | Insects, cockroaches | | | | Antennal glands/ Green glands | | Crustaceans (prawns) | | | | Human Excretory System | | | | | | Kidneys | (Pair) Ureters (Pair) | Urinary Bladder | Urethra | | | Note - Kidneys filter 1100-1200 mL blood per min (1/5th of what is pumped by ventricles). Inferior vena cava Descending vena cava Output Descending vena cava | | | | | | Right kidney Renal column Renal pelvis Medullary pyramid Cortex Ureter Common iliac artery | | | | | | Common
iliac vein | | | | | | Kidneys | Reddish brown, bean shaped. | | | | | Size | 10 - 12 cm (length) ,5 - 7 cm (width), 2 - 3 cm (thick) | | | | | Weigth | 120 - 170 gm | | | | | Location | Level of last thoracic & 3rd lumbar vertebra; close to dorsal inner wall (abdomen). | | | | #### Structure - Hilum Notch at concave side of kidney (Ureter, blood vessels enter) - Calyces projections in funnel shaped space(renal pelvis) - Capsule outer layer (tough) - There are two zones in Kidney- Cortex and Medulla. - Medulla is divided in medullary pyramids, projecting in calyces - Column of Bertini cortex extending b/w medullary pyramids - Peritubular capillaries- Network of capillary made by efferent arteriole around renal tubule. - Vasa recta-Vessel network running parallel to Henle's Loop #### **Urine Formation** **Glomerular Filtration** Reabsorption Secretion # (1) GLOMERULAR FILTRATION (or ULTRAFILTRATION) - Blood pressure in glomerular capillary causes filtration. - · Filtration occurs by via 3 Layers - -Endothelium (blood vessel) - -Bowman's capsule (epithelium) - -Basement membrane - Glomerular/Nephric filtrate = Blood-(Blood cells + Plasma protein) - Glomerular filtration rate (GFR)- Amount of filtrate formed by kidneys per min. ≈125mL/min or 180 L/day. Note- In Bowman's capsule, podocytes arrangment forms slit pores. Juxta Glomerular Apparatus (JGA) - Cellular modification of DCT and afferent arteriole. - Fall in GFR, activates JG cells (brings GFR back to normal) (2) REABSOPRTION - Substances filtered (Na, K, glucose, AA, bicarbonate, 75% water) are reabsorbed by renal tubules (PCT) actively. - Some nitrogenous waste and water also reabsorbed passive. ## (3) SECRETION - Secretion of H⁺, K⁺ & ammonia into filtrate by tubular cells. - Important for urine formation, maintaining acid-base idnic balance by fluids. #### **FUNCTIONS OF TUBULES** PCT Henle's Loop DCT **Collecting Duct** ## Proximal convoluted tubule (PCT) - Lined by brush border cuboidal epithelium (High surface area - 70-80% reabsorption of H₂O & electrolytes - Maintain pH, Ionic balance - secretion of H⁺, K⁺ & NH⁺⁴ ions; absorption of HCO₃⁻ ions. | Henle's Loop | | | | | |---|------------------------|--|--|--| | Ascending limb | Descending Limb | | | | | Reabsorption (v. Less) | Permeable to H₂O | | | | | Maintains osmolarity of medullary | Impermeable to | | | | | interstitial fluid | electrolytes | | | | | Impermeable to H ₂ O ,Permeable to | concentrates filtrate | | | | | electrolytes Dilutes filtrate | concentrates filtrate. | | | | ## Distal convoluted tubule (DCT) - Reabsorption of Na⁺, H₂O, HCO³ - Secretion of H⁺, K⁺, NH₃, - maintains pH & Na⁺ K⁺ balance in blood ## **Collecting Duct** - extends from cortex to medulla - forms concentrated urine (reabsorb H₂O) - mainatain osmolarity, pH, Ionic balance - selectively secretes H*,K* ions #### **Counter Current Mechanism** Flow of filtrate in two limbs of Henle's Loop and blood in both Limbs of vasa recta in opposite direction. - Osmolarity increases from cortex to medulla (300 mOsmol/L to 1200 mOsmol/L) - due to NaCl & urea. - Helps urine to get concentrated (4 times). ## **Regulation of Kidney Functiom** Hormonal feedback mechanism - Hypothalamus, JGA, heart Loss of stimulates Activate ADH Helps fluids hypothalamus (Antidiuretic hormone) reabsorption from blood or Vasopressin *Feedback mechanism suppresses ADH receptors increases body fluid volume # Renin - Angiotensin mechanism (Falls in GFR) activates JG cells and Releases Renin A check to the Renin-Angiotensin mechanism High blood Atrail Natriuretic Factor (ANF) Vasodilation decreases ## **MICTURITION** - Process to release urine Micturition - Signals from CNS are received, in response to stretch receptors of walls of the urinary bladder; contracts smooth muscles; urethral sphincter relaxes. - Average 1-1.5 L/day urine. - Acidic (pH-6) in nature, 25-30gm of urea per day Presence of glucose in urine - Glycosuria diabetes Presence of ketone bodies in urine - ketonuria mellitus ### Other organs - Lungs- Remove CO₂ (200mL/min) and water - Liver- Secrete bilirubin, biliverdin, cholesterol, steroid hormones, vitamins (released as digestive waste) - Sweat glands Sweat contains H₂O, NaCl, urea (small amount), lactic acid etc. - Sebaceous glands eliminates small amount of nitrogenous waste, Steroids, hydrocarbons ## DISORDERS - <u>Uremia</u> Kidney malfunction due to urea accumulation. - Renal calculi Stone/insoluble mass of crystallised salts (oxalates, etc) in kidney. - Glomerulonephritis Inflammation of glomeruli of kidney. - Renal failure/Kidney failure - Urea can be removed by hemodialysis (use of artificial kidney for clearing blood) - Artificial kidney contains a cellophane tube that helps passing nitrogenous waste to dialysing fluid (same composition as plasma). Heparin is used as anticoagulant.